Landscape Machine CHECKLIST

Figure 2: An energy systems diagram of a hypothetical Landscape Machine described by making use of COOS – the key concepts of evolutionary thermodynamics described by Tiezzi. A set of interacting processes, energy and material flows that resemble functions and services performed by a hypothetical landscape machine. Processes, systems and connections among them have a spatial and temporal dimension, each of which is the potential object of a deep investigation and design. By Riccardo M. Pulselli 2012.

The design follows a procedure that is besides being dependent upon local circumstances, roughly generic according to these points:


examine (4 points)

  • examine the confinement of the landscape machine
  • examine potential ecosystem services
  • examine historic systemics of the site and past/present social engagement (e.g. cultural embedding)
  • examine external and internal metabolic relationship and mark by what they can be measured


define (4 points)

  • define desirable nutrient cycles and feedback systems (recycling)
  • define nutrient cycles geographically and describe what has to be connected/isolated?
  • define desirable human, animal and plant life involvement (affordances and landscape ecology)
  • define what type of yield is possible over what timespan (strive for abundance and diversity)


A rather pragmatic part of the procedure is to administrate an input-output scheme of the metabolism. This scheme, together with accompanying cross sections that show the dimensions in the landscape, indicate what types of interactions may take place. We argue, and have witnessed, that such schemes can serve as the neutral ground for both the designer and the involved specialists to foster the research and design process.



Tiezzi, E (2011), ‘Ecodynamics: Towards an evolutionary thermodynamics of ecosystems’, Ecological Modelling, (222), 2897-902.

Landscape Machine TYPOLOGY

Recent examples of landscape machines envisioned in the design laboratory at Wageningen University have revealed several types that clarify the diversity of living system design. Even while all designs reveal a site-consciousness, they differ in their productive aim and living system methods.

production type, example see here

waste treatment type, example see here

system repair type, example see here

renewable energy type, example see here

With the ‘production type’ an initially small enclosed cycle of crop or livestock breeding is upscaled to become an open chain of nutrients, waste and fertilizer exchange. The landscape machine enlarges the amount of production units while being responsive to existing or dormant landscape processes that are cooperatively used.

With the ‘waste treatment type’ it is intended to decontaminate soil, water or artificial materials by means of ecological processes. The sequence of processes is determined by variation in time, size and position of the various cleaning stages. Eventually, the majority of waste is turned into valuable resources. In some cases, a minority of waste residue has to be isolated to perform in extreme types of landscape environments (e.g. the sink garden in Dredge Landscape Park) and to avoid contamination of other systems.

The ‘system-repair type’ is an intervention in a landscape to re-adjust an unbalanced aspect within for instance delta regions, riverbeds or beach and breach coastlines. Due to human creations such as deep sea harbors, some dynamical systems need continuous and costly maintenance that results in an equally continuous hindrance of biodiversity and system complexity. Such landscapes are ‘kept alive’ by relentless human involvement that by their necessary brutality continuously effect the evocation of natural balances. Carefully designed landscape machines are however capable to catch up with natural balances within dynamical landscapes and by doing so, introduce more abundant and diverse biodiversity that can thereafter become the basis for local and sustainable economical management. For example, the project ‘Ems, full hybrid’ , reveals that a sea-delta can be restored to a natural balance of width, depth and shape of the delta while adding new breeding grounds for mussels and a vast diversity in marine biotopes that, given the change to mature, will re-establishes an (economically profitable) gradient between mainland and delta landscapes.

Lastly, the ‘renewable-energy type’ of landscape machines are intended to redesign the infrastructure of energy and mass exchange within a confined physical environment (or region). The availability of local materials and energy to produce electricity and heath/cooling can be enhanced by living system design. Renewable energy provided by natural forces such as ebb and flood, plantgrowth, wind, sun, and the chemical difference between sweet and salt water (i.e. blue energy) all offer parts of a puzzle that is needed to assimilate and store a guaranteed amount of energy. The various parts of this machine operate within their own timeframe and speed, some very slow and some need prevention to develop into the next successive state. The periodicity and overlapping biorhythms are specific to this type of design and are especially interesting to describe by way of an evolutionary thermodynamical system.

Landscape Machine ABC

A – Aim is to design a sublime and productive landscape (food, energy and pollution treatment by bio mechanical development).


B – Behavior of future Landscape Machines is described by the COOS acronym: “they are open systems with their own evolutionary autonomy […], they are confined inside a bounded space in which they develop their processes, they are ontic, maintaining their internal evolutionary memory which cannot be deleted because it obeys the arrow of the time” (Tiezzie 2011: 2901).


C- Conditions to be taken into account are: (1) development over time (> 20 yrs.), (2) abundance of production and social incentives for landscape engagement



Landscape Machine DEFINITION

The definition of a landscape machine can principally be explained in threefold:

(1) It is a productive landscape that by a design intervention will resolve an existent malfunction in the physical environment. This malfunction may already be explicitly present by negatively affected ecological, societal and economic development. The malfunction may also be artificially introduced in a landscape, because the environmental interactions are expected to be resilient against an introduced stress, i.e. respond with a beneficial processing. The design effort lies in the determination of the components, scale, position, time and set of human/animal interactions, by which a landscape could adapt to a desired functional situation. The malfunction (or induced stress) needs to be quantified to predict the material interactions and it also needs to be qualified to understand the type of interactions to facilitate new routines of human/animal involvement.


(2) The machine-aspect consists of ecologically described  processes that are either enlarged or stimulated to perform. These will continuously interact with each other, affecting the shape, scale and position of components within the landscape. There is a dynamic exchange, a continuous shift of ecological interactions, because there is a continuous disturbance of the system by large scale harvesting of crops, fresh water, cleaned soil or animal stock. There is need for a book keeping model of all the input and output that runs through the system.


(3) The design and evaluation of the functionality is made explicit by an input-output ratio, i.e. metabolism of the system. This can both be monitored quantitatively (e.g. amounts of water retention and waste decomposition) and qualitatively (e.g. human and animal responses and well being). The overall development can be simplified by four stages: an initial stage, a growth stage, a yield stage and a steady state stage. During the initial stage an intervention is made in the landscape and the related societal/(a)biotic types of engagement. The growth stage is transitional due to various parallel successions that interact. During the yield stage the Landscape Machine entirely regulates itself, is powered by renewable resources and will provide a maximum amount of ecosystem services and goods. The steady state stage would be the ideal state of the landscape machine because it indicates that the continuous harvesting of products can coincide with continuous shifts within the landscape, maintaining an abundance of biodiversity (ad. 2). Preferably developing into the dynamic and dissipative ecosystem such as mangrove forests, wetland systems or highland peats. Yet it could also evolve into a steady state that is no longer productive. This would mean a failure according to the intended design, but a success to a newly introduced ecological state.